Supposons que l'on a déjà la valeur y, la solution de l'équation (VIII .4.A.5), on
retrouve x2 = y - M, . En utilisant les deux premières équations de (VIII .4.A.3), il est
facile de trouver y, et yz . Pour que y, et y2 soient réelles, on détermine la limite de
X2 :
Suppose that one is already set to y, the solution of the equation (VIII. 4.A.5), on
found x 2 = y - M, Using the first two equations of (VIII. 4.A.3), it is
easy to find y, and yz. For y, and y2 are real, it determines the limit of
X 2:
번역되고, 잠시 기다려주십시오..

Suppose that you already have the value y, the solution of equation (VIII .4 A.5.), We
find x2 = y - M. Using the first two equations (VIII .4. A.3), it is
easy to find it, and yz. For y, and y2 are actual, the limit is determined
X2:
번역되고, 잠시 기다려주십시오..

Suppose you already has the value y, the solution of the equation (VIII .4.A. 5), we
found x2 = y - M, . Using the first two equations of (VIII .4.A. 3), it is
easy to find y, and yz . For that y, and y2 are real, it determines the limit of
X2:
번역되고, 잠시 기다려주십시오..
